
Journal of Approximation Theory 95, 53�81 (1998)

Nearly Comonotone Approximation*

D. Leviatan

School of Mathematical Sciences, Sackler Faculty of Exact Sciences,
Tel Aviv University, Tel Aviv, 69978, Israel

and

I. A. Shevchuk

Institute of Mathematics, National Academy of Sciences of Ukraine,
Kyiv, 252601, Ukraine

Communicated by Manfred v. Golitschek

Received December 30, 1996; accepted in revised form June 4, 1997

We discuss the degree of approximation by polynomials of a function f that is
piecewise monotone in [&1, 1]. We would like to approximate f by polynomials
which are comonotone with it. We show that by relaxing the requirement for
comonotonicity in small neighborhoods of the points where changes in monotonicity
occur and near the endpoints, we can achieve a higher degree of approximation. We
show here that in that case the polynomials can achieve the rate of |3 . On the other
hand, we show in another paper, that no relaxing of the monotonicity requirements
on sets of measures approaching 0 allows |4 estimates. � 1998 Academic Press

1. INTRODUCTION

Let I :=[&1, 1], and for s�1 let Y :=[ yi] s
i=0 , &1= ys< } } } < y1<

y0=1. Finally let 2(1)(Y ) be the set of continuous functions f on I, such
that f is nondecreasing on [ yi , yi&1], when i is odd and it is nonincreasing
on [ yi , yi&1], when i is even, and set

6(x) := `
s&1

i=1

(x& yi).
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A polynomial Pn is said to be comonotone with f # 2(1)(Y ) on the set E/I,
if P$n(x) 6(x)�0, x # E. Note that if f # C 1(&1, 1), then f $(x) 6(x)�0,
x # (&1, 1) if and only if f # 2(1)(Y ).

A. S. Shvedov [10] proved that for each Y there exists a constant c(Y ),
such that for every f # 2(1)(Y ) and all n�1 an algebraic polynomial Pn , of
degree �n, which is comonotone with f on I, exists satisfying

& f &Pn&C(I )�c(Y ) |2( f , 1�n), (1.1)

where |k( f ; } ) denotes the modulus of smoothness of order k, of f. (Earlier
DeVore [2] proved (1.1) for the case s=1, which is the case where f is
monotone and of course the dependence of c(Y ) on Y is meaningless, i.e.,
c is an absolute constant.) More recently, R. A. DeVore and X. M. Yu [4]
and G. A. Dzyubenko [6] have shown that one can get also pointwise
estimates, namely,

| f (x)&Pn(x)|�c(Y ) |2( f, \n(x)), (1.1$)

where \n(x) :=- 1&x2�n+1�n2.
On the other hand it is known (see [10]) that in (1.1) and (1.1$), one

cannot replace |2 by |k with any k�3.
It is quite natural to ask whether one can strengthen (1.1) in the sense

of being able to replace |2 by moduli of smoothness of higher order, if one
is willing to allow Pn not to be comonotone with f on a rather ``small''
subset of I. This indeed turns out to be possible for |3 , as we show in
Theorem 1. However, even this improvement comes to a halt, it cannot be
extended to |4 , and thus not to |k for any k>3. We devote a separate
paper [3] to proving this assertion when f is monotone. Here we will only
state the result in the general case (see Theorem 4 below); the proof is a
modification of [3].

We begin with some notation needed for the statement of Theorem 1.
Let x&1 :=1, xn+1 :=&1 and for each j=0, ..., n, set xj :=xj, n :=
cos( j?�n), Ij :=Ij, n :=[x j , xj&1], and hj :=hj, n :=|I j | :=xj&1&xj . For
later reference we need the following well known relations (see, e.g., [7])

\n(x)<hj<5\n(x), x # Ij , (1.2)

hj\1<3hj , j=1, ..., n, (1.3)

\2
n( y)<4\n(x)( |x& y|+\n(x)), x, y # I, (1.4)

which in turn implies

2( |x& y|+\n(x))>|x& y|+\n( y), x, y # I, (1.5)
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and

c \ hj

|x&x j |+hj+
2

�
\n(x)

|x&xj |+\n(x)
,

�C \ hj

|x&xj |+hj+
1�2

. (1.6)

Given Y, let

Oi :=Oi, n(Y ) :=(xj+1 , xj&2), if y i # [x j , x j&1),

O(n; Y ) := .
s&1

i=1

Oi , n�1, O(0, Y ) :=[&1, 1],

and

O*(n, Y ) :=O(n, Y ) _ I1 _ In , n�1, O*(0, Y ) :=[&1, 1].

We first prove

Theorem 1. There are constants c=c(s) and C(s) for which, if
f # 2(1)(Y ), then for every n>1, a polynomial Pn of degree not exceeding n,
which is comonotone with f on I"O*([n�c], Y ) exists, such that

| f (x)&Pn(x)|�C(s) |3( f, \n(x)). (1.7)

We are able to obtain estimates involving moduli of higher orders for
classes of differentiable functions, namely,

Theorem 2. Let k�2 be fixed. Then there are constants c=c(s, k) and
C(s, k) for which, if f # 2(1)(Y ) & C 1[&1, 1], then for each n�k&1,
a polynomial Pn of degree not exceeding n, which is comonotone with f on
I"O([n�c], Y ), exists such that

| f (x)&Pn(x)|�C(s, k) \n(x) |k&1( f $, \n(x)), x # I. (1.8)

It is interesting to note that the differentiability of f, without giving up
some small neighborhoods of the points Y, in general does not allow
statements like (1.8). Indeed among others, it is shown in [8] that there is
an f # 2(1)(Y ) & C1[&1, 1], with s>1 number of changes of monotonicity,
which is thrice differentiable in (&1, 1) and such that (1&x2)3�2 f (3)(x) is
bounded there, and yet the least distance (in the sup-norm) between f and
polynomials which are truly comonotone with it, can be made as large as
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one wishes. (There are other interesting phenomena for truly comonotone
approximations; the interested reader is referred to [8].)

Observe that O(1, Y )=O*(1, Y )=[&1, 1], thus it is clear that for
n<2c, we place no monotonicity constraint on the approximating poly-
nomials. Therefore Theorems 1 and 2 follow from the well-known uncon-
strained Timan�Dzjadyk�Freud�Brudnyi estimates and we only have to
prove them for larger n.

We shall make no attempt to estimate how small the constants c in
the above theorems can be. Obviously, the smaller they are the smaller the
neighborhoods O*([n�c], Y ) and O([n�c], Y ) are, thus the stronger the
results are. However, we feel it is important to point out that c cannot be
too small or the above theorems become false for s>2. To this end we
prove the following result in Section 5.

Theorem 3. For each A�1 and n�60A, there exists a collection
Yn :=[ yi]3

i=0 , and a function f =fn # 2(1)(Yn), such that any polynomial Pn

of degree not exceeding n which satisfies

P$n(x) f $(x)�0, x � O*(8?n, Yn),

necessarily satisfies also

" f &Pn

|1( f, \n( } ))">A. (1.9)

Note that the collection Yn depends on A and that if we stated Theorems
1 and 2 with constants that depend on Y, then obviously we would not
have the analogue of Theorem 3. Also, evidently when A increases, n is
taken bigger and bigger. Indeed, for small (fixed) n, it is possible to take
c in Theorems 1 and 2 as small as we wish if we are willing to pay by
enlarging C. Furthermore, if s=1 or 2, then it is possible to take c
arbitrarily small (at the expense of increasing C). Finally one should note
that for any s, the neighborhoods of the endpoints in Theorem 1 can be
taken to be of length of arbitrarily small (=) proportion of 1�n2 while
allowing C :=C(s, =).

To conclude this section, we state without proof (the proof will be given
elsewhere) the following result which asserts that Theorem 1 cannot be
valid for higher moduli of smoothness (see [3]). To this end, given =>0
and a function f # 2(1)(Y ), we denote

E (1)
n ( f ; =) :=inf

Pn

& f&Pn&C(I ) ,
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where the infimum is taken over all polynomials Pn of degree not exceeding
n satisfying

meas([x; P$n(x) 6(x)�0] & I )�2&=.

Theorem 4. For each sequence =� =[=n]�
n=1 , of nonnegative numbers

tending to 0, there exists a function f :=f=� # 2(1)(Y ), such that

lim sup
n � �

E (1)
n ( f ; =n)

|4( f, 1�n)
=�. (1.10)

Throughout this paper we take k�2. In the sequel we will have con-
stants which depend on s and k. If they are independent of any other term,
then we will not explicitly write this dependence. However, we will use the
notation c and C to denote such constants which are of no significance to
us and may differ on different occurrences, even in the same line; and we
will have constants with indices c1 , c2 , ... and C1 , C2 , ... when we have a
reason to keep trace of them in the computations that we have to carry in
the proofs.

2. AUXILIARY LEMMAS

Since we deal with functions f, which are piecewise monotone, then f $
exists a.e. in I. We will use the max-norm of f as well as the norm of f $ in
L� (when applicable). Thus, for any interval J/I, let us denote

& f &J :=& f &L�(J) ,

which is obviously compatible with the max-norm whenever f is con-
tinuous.

Throughout this section, n�1 is going to be fixed so that we would not
have to carry n as an index for the intervals, etc.

First we prove

Lemma 1. Let H0 :=0<H1<H2<H3 , 'j :=Hj&Hj&1 , j=1, 2, 3, be
such that 1�3<'2�' j<3, j=1, 3; and let f # C[0, H3] be nondecreasing in
[0, H3]. Then there is a quadratic polynomial P2 , interpolating f at H1 and
H2 , such that

& f&P2 &[H1, H2]�c|3( f, '2 ; [0, H3]),
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and

P$2(x)�0, x # [H1 , H2].

Proof. Let

L0(x) :=L(x; f ; 0, H1 , H2) and L2(x) :=L(x; f ; H1 , H2 , H3)

be the Lagrange polynomials of degree 2, interpolating f at the points
0, H1 , H2 , and H1 , H2 , H3 , respectively, and let L1(x) :=L(x; f ; H1 , H2)
be the linear function which interpolates f at H1 and H2 .

If L$0(x)�0, or L$2(x)�0, for x # [H1 , H2], then the assertion follows
from Whitney's inequality. Otherwise, we have

L"0(x)�0 and L"2(x)�0, x # [H1 , H2],

whence

L2(x)�L1(x)�L0(x), x # [H1 , H2].

Applying Whithey's inequality we get, for x # [H1 , H2],

L1(x)& f (x)�L0(x)& f (x)�&L0& f&[H1, H2]

�&L0& f&[0, H3]�c|3( f, '2 ; [0, H3]),

and

f (x)&L1(x)� f (x)&L2(x)�& f&L2&[H2, H2]

�& f&L2 &[0, H3]�c|3( f, '2 ; [0, H3]).

Hence

&L1& f&[H1, H2]�c|3( f, '2). K

Next we have

Lemma 2. If f # C 1[0, h] and f $(x)�0 for x # [0, h], then there is a
polynomial Pk&1 of degree �k&1 such that

& f&Pk&1&[0, h]�ch|k&1( f $, h; [0, h]), (2.1)

f (0)=Pk&1(0), f (h)=Pk&1(h) (2.2)

and

P$k&1(x)�0, x # [0, h]. (2.3)
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Proof. If f is a polynomial of degree <k, then obviously there is
nothing to prove. Otherwise let P*k&2 be the polynomial of the best uniform
approximation of f $ in [0, h], and denote

Ek&2 :=& f $&P*k&2&[0, h]>0.

Set

Pk&1(x) :=f (0)+
f (h)& f (0)

�h
0 (P*k&2(u)+Ek&2) du |

x

0
(P*k&2(u)+Ek&2) du,

where it is readily seen that the denominator is not zero and that (2.3)
follows by

P*k&2(u)+Ek&2� f $(u)�0, u # [0, h].

Also, it is evident that (2.2) holds thus we only have to prove (2.1). To this
end, for x # [0, h] we have

f (x)&Pk&1(x)

=|
x

0
( f $(u)&P*k&2(u)&Ek&2) du&|

h

0
( f $(u)&P*k&2(u)&Ek&2) du

_
�x

0 (P*k&2(u)+Ek&2) du

�h
0 (P*k&2(u)+Ek&2) du

.

Hence

& f&Pk&1&[0, h]�2hEk&2 .

Now (2.1) follows by Whitney's inequality. K

Denote by 7k the collection of continuous piecewise polynomials of
degree �k with the knots at the xj 's. Thus, S # 7k is differentiable in I
except perhaps at the xj 's. We denote this derivative by S$.

Let . # 8k, i.e., .(0+)=0 and .(t) is nondecreasing while t&k.(t) is
nonincreasing on (0, �). We will use the ordinary notation f # H .

k and
f # W1H .

k , respectively, for f with |k( f, } )�. and for differentiable f with
|k( f $, } )�..

Then, Lemmas 1 and 2 readily imply the following Lemmas 3 and 4,
respectively.

Lemma 3. Let . # 83. If f # H .
3 and f # 2(1)(Y ), then there is an S # 72

such that

& f&S&Ij
�c.(hj), j=1, ..., n,
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and

S$(x) 6(x)�0 in I"O*.

Lemma 4. Let | # 8k&1 and .(t) :=t|(t). If f # W1H |
k&1 & 21(Y ),

then there is an S # 7k&1 such that

& f&S&Ij
�c.(hj), j=1, ..., n,

and

S$(x) 6(x)�0 in I"O.

The following lemma is proved very much like [7, Lemma 5.4] (see also
a simpler variant [8, Theorem 1]).

Lemma 5. Let . # 8k and suppose that f is locally absolutely continuous,
that

& f $&Ij
�

1
h j

.(h j), j=1, ..., n

and that

f $(x) 6(x)�0, a.e. x � O or x � O*.

Then there is a polynomial Vn such that

& f&Vn&Ij
�c.(hj), j=1, ..., n

and

V$n(x) 6(x)�0, x � O or x � O*,

respectively.

Now let Ii, j be the smallest interval containing Ii and Ij and denote
hi, j :=|I i, j |. For S # 7k&1 , put

ai, j=ai, j (S, .) :=
&pi& pj&Ii

.(hj) \ h j

hi, j+
k

, i, j=1, ..., n, (2.4)

where pi is the polynomial defined by pi | Ii
:=S | Ii

. Finally for any E/I let

ak(S, .; E) :=max a i, j (S, .),
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where the maximum is taken over all i, j such that I1 i & E{< and
I1 j & E{<, where J1 denotes the interior of J; and

ak :=ak(S, .; I ).

We have

Lemma 6. There is a constant c, depending only on k, such that for any
f # H .

k and S # 7k&1 , if

& f&S&Ij
�.(h j), j=1, ..., n, (2.5)

then

ak�c. (2.6)

Proof. We divide Ij into k subintervals of equal lengths by setting
xj, 0 :=xj<xj, 1< } } } <xj, k&1<xj&1 and we let Lk be the Lagrange poly-
nomial of degree k&1 interpolating f at xj, l , l=0, ..., k&1. Then by
Whitney's theorem

& f&Lk&Ij
�c|k( f, hj)�c.(hj). (2.7)

Hence by (2.5)

&pj&Lk&Ij
�c.(h j),

which implies

&pj&Lk&Ii
�c \hi, j

hj +
k

.(hj). (2.8)

At the same time, (2.7) implies (see [9, p. 51, (4.15)])

& f&Lk &Ii
�c \hi, j

hj +
k

.(hj). (2.9)

Combining (2.5) with (2.8) and (2.9) we obtain

&pi& pj &Ii
�c \hi, j

hj +
k

.(hj)+.(hi)

�c \hi, j

h j +
k

.(hj),
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where if hj>hi we used the inequality .(hi)�.(hj), and if hj�hi , then due
to . # 8k we have

.(hi)�\hi, j

h i +
k

.(hi)�\hi, j

h j +
k

.(hj). K

3. THE MAIN LEMMAS

We begin with a well-known partition of unity by polynomials which
goes back to G. Freud and Yu. A. Brudnyi (see, e.g., Dzjadyk [5,
p. 273�277]). For each fixed integer r, a collection [{j, n]n

j=1 , of polyno-
mials of degree �n, exists such that

:
n

j=1

{j, n(x)#1, (3.1)

and for q=0, 1, ... we have

|{ (q)
j, n(x)|�C

hj

\q+1
n (x) \

\n(x)
|x&xj |+\n(x)+

r+1

, x # I, (3.2)

where C depends on q and r. (Inequality (3.2) for q=0 follows from [5,
p. 277, (13)], by (1.4) and (1.6); and for higher q by induction. Actually,
we only need q=0, 1.)

First we prove

Lemma 7. Let r�3k, . # 8k, and S # 7k&1 . For n1�N, with n1 divisible
by n, the polynomial

Dn1
(x) := :

n

i=1

pi (x) :
& : I&, n1

�Ii

{&, n1
(x), (3.3)

satisfies

|S(x)&Dn1
(x)|�C0 ak.(\n(x)), x # I, (3.4)

and

|S$(x)&D$n1
(x)|�C0 ak

.(\n(x))
\n(x)

, x # I. (3.5)
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Moreover, for each 0<$<1,

|S$(x)&D$n1
(x)|�C1ak(S, .; (x&$, x+$) & I )

.(\n(x))
\n(x)

+c2ak \
\n1

(x)

\n1
(x)+$+

r+1&3k .(\n(x))
\n(x)

, x # I, (3.6)

where Cl=Cl (k, r).

Proof. Recall that throughout the paper we assume k�2. (Since for
k=1, S is a constant, Lemma 7 is valid also for k=1.) We will only prove
(3.6), the proof of (3.4) being similar, and evidently, (3.5) being an
immediate consequence of (3.6).

We fix 1� j�n, and x # Ij and to save in writing we set \ :=\n(x), and
\1 :=\n1

(x). Since pj& pi is a polynomial of degree not exceeding k&1,
then

&pj& pi&Ij
�c \hi, j

hi +
k&1

&pj& pi&Ii
.

Hence by (1.6) and (2.4),

&pj& pi&Ij
�c \hi, j

h i +
k&1

\h i, j

h j +
k

.(hj) a i, j

�cai, j.(hj) \hi, j

h j +
3k&2

=: c0i, j , (3.7)

which in turn implies

&p$j& p$i&Ij
�

c
hj

0i, j . (3.8)

(Note that for u # Ii , (1.2) and (1.3) imply that hi, j t |u&x|+\, that is,
there are constants 0<c<C independent of i, j, and n, for which
chi, j<|u&x|+\<Ch i, j .) Now, if we write |x&xi*

| :=min[ |x&x i |,
|x&xi&1 |], then it follows by (3.7) and (3.8) that

| pj (x)& pi (x)|�c
|x&xi*

|
hj

0 i, j . (3.9)

Indeed if i= j, there is nothing to prove; if i{ j\1, then (3.9) is an
immediate consequence of (3.7) and the inequality (see (1.3))

|x&xi*
|>hj �3,
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and if i= j+1 (a similar proof applies to i= j&1), then

| pj (x)& pi (x)|= } |
x

xj

( p$j (u)& p$i (u)) du }
�|x&xj |

c
hj

0i, j=c
|x&xi*

|
hj

0i, j ,

since |x&xj+1 |>|x&xj |. Thus, if we denote

_i (x) := :
& : I&, n1

�Ii

{&, n1
(x),

then by (3.2) with q=0, we have for i{ j,

|_i (x)|�c :
& : I&, n1

�Ii

h&, n1
\r

1

(\1+|x&x&, n1
| )r+1

�c
\r

1

(\1+|x&xi*
| )r+1 :

& : I&, n1
�Ii

h&, n1

=
chi\r

1

(\1+|x&x i*
|)r+1 . (3.10)

In the same way (with q=1) we get for i{ j,

|_$i (x)|�
chi\r&1

1

(\1+|x&xi*
|)r+1 . (3.11)

Now by (3.1),

S$(x)&D$n1
(x)= :

i{ j

[( pj (x)& pi (x)) _$i (x)+( p$j (x)& p$i (x)) _i (x)]

=: :
i{ j

: i (x),

and by virtue of (3.8) through (3.11),

|:i (x)|�
ch i

hj
0i, j

\r&1
1

(\1+|x&xi*
|)r

�cai, j
.(\)

\
hi

\1 \
\1

\1+|x&xi*
|+

r+2&3k

.
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Hence

|S$(x)&D$n1
(x)|� :

n

i=0, i{ j

|: i (x)|

= :
i : |x&xi *

|<$

|: i (x)|+ :
i : |x&xi *

|�$

|:i (x)|

�cak(S, .; (x&$, x+$) & I )
.(\)

\
\1 :

n

i=1

h i

(\1+|x&xi*
|)2

+cak
.(\)

\
1

\1

:
i{ j : |x&xi *

|�$

h i \ \1

\1+|x&x i*
|+

r+2&3k

�cak($)
.(\)

\
\1 |

�

&�

du
(\1+|x&u| )2

+cak
.(\)

\
\r+1&3k

1 2 |
�

$

du
(\1+u)r+2&3k

�cak($)
.(\)

\
+cak

.(\)
\ \ \1

\1+$+
r+1&3k

,

where x being fixed, we used the shorter notation ak($) :=ak(S, .;
(x&$, x+$)). This concludes the proof of (3.6). K

The following lemma is crucial to our proof.

Lemma 8. Let the interval E consist of l�12s of the intervals I j , and let
J be a subcollection of +�l�4 of those intervals and we write J :=� J.
Then for each . # 8k, there exists a polynomial Qn(x)=Qn(x; E; J; .), of
degree not exceeding 30ksn, satisfying

Q$n(x) 6(x)�0, x � E"(O _ J); (3.12)

Q$n(x) sgn 6(x)� &
.(\)

\
, x # E"(O _ J); (3.13)

Q$n(x) sgn 6(x)�c3

l
+

.(\)
\

, x # J"O, (3.14)

where we may assume that c3�1;

Q$n(x) sgn 6(x)�c3

l
+

.(\)
\ \ \

\+dist(x, E)+
36sk

, x # I"(E _ O); (3.15)
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and

|Qn(x)|�C.(\) l k+13kl \ |E|
|E|+dist(x, E)+

3

, x # I, (3.16)

where |E| denotes the length of E.

Proof. We begin by quoting some results from [7] (see Lemma 5.3
there and the definitions above it). We put b :=max(6s, 8k&s+1), and
for each j such that Ij & O=< (which we denote by j # H), we let the
polynomials Tj (x)=Tj, n(x; b; Y ) and T� j (x) :=T� j, n(x; b; Y ) of degree
(b+1)(4n&2)+s+2 be those defined there.

We recall that

Tj (1)=T� j (1)=1,

and that by [7, (5.15) and (5.16)] we have

T $j (x) 6(x) sgn 6(x j)�0, x # I, (3.17)

and

T� $j (x) 6(x) sgn 6(x j)�0, x # I"Ij . (3.18)

Since

} x& y i

x j& yi }�1+ } x&x j

xj& yi }<4, x # I j ,

[7, (5.19)] implies

|T� $j (x)|�
c
\

, x # Ij ,

whence,

.(hj) |T� $j (x)|�c
.(\)

\
, x # Ij . (3.19)

If /j (x) :=/[xj , 1](x), then by [7, (5.23) and (5.24)], we have

|/j (x)&Tj (x)|�c \ hj

|x&x j |+hj+
8k+1

, x # I,
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and

|/j (x)&T� j (x)|�c \ hj

|x&x j |+hj+
8k+1

, x # I.

Hence, by virtue of (1.5), it follows that

.(hj) |/j (x)&Tj (x)|�c.(hj)
h j

\ \ hj

|x&xj |+hj +
4

, x # I,

and

.(hj) |/j (x)&T� j (x)|�c.(hj)
h j

\ \ hj

|x&xj |+hj +
4

, x # I. (3.20)

Similarly, by (1.6), we have (see also [7, (5.29) and (5.30)])

.(hj) |/j (x)&Tj (x)|�.(\)
hj

\ \ \
|x&xj |+\+

4

, x # I, (3.21)

and

.(hj) |/j (x)&T� j (x)|�.(\)
hj

\ \ \
|x&xj |+\+

4

, x # I. (3.22)

In view of (1.2), it follows from [7, (5.28)] that

.(hj) |T $j (x)|�c
.(\)

\
, x # Ij , (3.23)

and observing that

} x& y i

xj& yi }�
|x& y i |

|x&xj |+|x& y i |
�

\�3
|x&xj |+\

, x # I"O,

then finally (1.6) and [7, (5.22)] (see also [7, (5.27)]) yield

.(hj) |T $j (x)|�c
.(\)

\ \ \
|x&x j |+\+

4b+s+k&2

, x # I"O. (3.24)

We are ready to proceed with the proof. We write j # H(E) if j # H (defined
at the beginning of the proof) and Ij �E. We denote by j0 and j0 , the
biggest and the smallest indices, respectively, in H(E). Note that

|x&xj0 |+\�c(dist(x, E)+\),
|x&xj0

|+\�c(dist(x, E)+\),
x�xj 0 ,
x�x j0

.
(3.25)
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Similarly we write H(J) :=H(E) & J and H(J0) :=H(J) _ [ j 0, j0].
Denote by l1 the number of all indices in H(E) and by +1 the number of
indices in H(J0). Then

l&3s�l1�l, and +1�++2. (3.26)

We set

;j :=sgn 6(xj)

and consider two cases.
First assume that ;j has the same sign ;, for all j # H(E) and let

a :=
l
+

� j # H(J0) .(hj)

� j # H(E)"H(J) .(h j)
. (3.27)

We estimate the numerator by

:
j # H(J0)

.(hj)�(++2) max
j # H(E)

.(hj). (3.28)

By (3.26), the number of elements in H(E)"H(J) is at least

l1&+�l&3s&+�l�2.

Since . # 8k, we can prove in a similar way to that of [9, Lemma 17.1]
that

:
j # H(E)"H(J)

.(hj)�cl max
j # H(E)

.(h j).

Therefore we have established that a defined above is bounded, say by c
*

,
independently of E and J. Hence by (3.19)

a.(hj) |T� $j (x)|�c
*

.(\)
\

, x # Ij . (3.29)

Put

Qn(x) :=
;

c
*
\ l

+
:

j # H(J0)

.(h j) Tj (x)&a :
j # H(E)"H(J)

.(hj) T� j (x)+ .

We will show that Qn has the required properties. First, (3.12) follows
immediately from (3.17) and (3.18). Also, by virtue of (3.17) and (3.18) we
have
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Q$n(x) sgn 6(x)�&
a

c
*

.(hj) |T� $j (x)|, x # I j �E"(O _ J), (3.30)

Q$n(x) sgn 6(x)�
1

c
*

l
+

.(hj) |T $j (x)|, x # Ij /J"O, (3.31)

Q$n(x) sgn 6(x)�
1

c
*

l
+

.(hj0
) |T $j0 (x)|, x�xj0&1 , (3.32)

Q$n(x) sgn 6(x)�
1

c
*

l
+

.(hj 0) |T $j 0 (x)|, x�xj 0 . (3.33)

Now we obtain (3.13) from (3.29) and (3.30); (3.14) follows by virtue of
(3.23) and (3.31); and (3.32), (3.33), (3.23), (3.24), and (3.25) are combined
to yield (3.15).

Thus, to complete the proof we have to prove (3.16). To this end we
rewrite Qn as

c
*

;Qn(x)=\ l
+

:
j # H(J0)

.(h j)(Tj (x)&/ j (x))

&a :
j # H(E)"H(J)

.(h j)(T� j (x)&/j (x))+
+\ l

+
:

j # H(J0)

.(hj) /j (x)&a :
j # H(E)"H(J)

.(hj) /j (x)+
=: A(x)+B(x), say.

If x # I"E, then all /j (x) with j # H(E) have the same value so that (3.27)
implies that B(x)=0. On the other hand, if x # E, then by virtue of (3.27)
and (3.28),

|B(x)|�2l(1+2�+) max
j # H(E)

.(h j)�cl max
j # H(E)

.(h j)

�cl.(\) \ |E|
\ +

k�2

�cl k+13kl.(\). (3.34)

In order to estimate A(x) we first assume that \�|E|. Then we apply
(3.21) and (3.22) and get

|A(x)|�cl\3.(\) :
j # H(E)

hj

( |x&xj |+\)4�cl\3.(\) |
E

du
( |x&u|+\)4

�cl\3.(\)
1

(dist(x, E)+\)3�cl.(\) \ |E|
|E|+dist(x, E)+

3

. (3.35)
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If on the other hand, |E|<\, then by (3.20) we have

|A(x)|�cl :
j # H(E)

.(h j)
h5

j

\( |x&xj |+h j)
4

�cl
.( |E| )

\
:

j # H(E)

|E| 4 hj

( |x&xj |+|E| )4

�cl |E|3 .( |E| )
|E|
\

:
j # H(E)

hj

( |x&xj |+|E| )4

�cl |E|3 .(\) |
E

du
( |x&u|+|E| )4

�cl |E|3 .(\)
1

(dist(x, E)+|E| )3

�cl.(\) \ |E|
|E|+dist(x, E)+

3

. (3.36)

This concludes the proof of (3.16).
In the second case, we assume that there are j1 # H(E) and j2 # H(E),

such that ;j1
;j2

<0. (In this case we do not make use of T� j , and hence we
can even strengthen (3.13) by replacing its right-hand side by zero.)

Depending on the sign of �j # H(J0) .(hj) ;j we take b�0 so that for

Qn(x) :=
l
+

:
j # H(J0)

.(h j) Tj (x) ;j+b.(hji
) Tji

(x) ;ji
, i=1 or i=2,

we have Qn(1)=0. Note that this implies that

b�
l
+

� j # H(J0) .(h j)

.(hji
)

. (3.37)

Now we proceed as in the first case and readily obtain

Q$n(x) sgn 6(x)�0, x # I,

Q$n(x) sgn 6(x)�
l
+

.(hj) |T $j (x)|, x # I j /J"O,

Q$n(x) sgn 6(x)�
l
+

.(hj0
) |T $j0 (x)|, x�x j0&1 ,

Q$n(x) sgn 6(x)�
l
+

.(hj0) |T $j0 (x)|, x�x j0 .

70 LEVIATAN AND SHEVCHUK



Finally, we rewrite

Qn(x)=\ l
+

:
j # H(J0)

.(hj)(Tj (x)&/j (x)) ;j+b.(hji
)(Tji

(x)&/ji
(x)) ;ji+

+\ l
+

:
j # H(J0)

.(hj) /j (x) ;j+b.(hji
) /ji

(x) ;ji+
=: A(x)+B(x), say.

As before, if x # I"E, then B(x)=0, and if x # E, then by (3.37) (see (3.34))

|B(x)|�2l
++2

+
max

j # H(E)
.(hj)�cl k+13kl.(\).

The estimate of |A(x)| is done in the same way as (3.35) and (3.36), where
again we employ (3.37). K

4. PROOF OF THEOREMS 1 AND 2

The crux of the proof is a lemma the idea of which goes back to the
seminal paper by DeVore [1].

Lemma 9. Let . # 8k and S # 7k&1 . Assume that

ak(S, .)�1, (4.1)

and that

S$(x) 6(x)�0, for x # I"O or for x # I"O*.

Then there is a polynomial Pn of degree �cn such that

|Pn(x)&S(x)|�C.(\n(x)), (4.2)

and

P$n(x) 6(x)�0, for x # I"O or for x # I"O*, respectively. (4.3)

Proof. Set r=3k&1+36sk, and let c1 :=C1(k, r) of (3.6). We fix an
integer c4 so that

c4�max(8k�c3 , 12s), (4.4)

where c3 is the constant of (3.14). Without loss of generality we are going
to assume that n is divisible by c4 , i.e., n=: Nc4 , where this defines N.
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We divide I into N intervals,

Eq :=[xqc4
, x (q&1) c4

]=Iqc4
_ } } } _ I(q&1) c4+1 , q=1, ..., N.

We will write j # UC (for ``Under Control'') if there is an x # I j such that

|S$(x)|�5c1

.(\)
\

, (4.5)

and we will say that q # G (for ``Good''), if Eq contains at least 2k&3 inter-
vals Ij with j # UC. Note that if q # G, then (4.1) implies that any of the
polynomials pj , (q&1) c4+1� j�qc4 satisfies

" p$j
\

.(\)"Eq

�c. (4.6)

Indeed, let i # UC and let x* # Ii be such that (4.5) holds for x*. Then by
virtue of (4.1),

| p$j (x*)|�| p$j (x*)& p$i (x*)|+| p$i (x*)|

�
c
hi

&pj& pi &Ii
+c

.(\n(x*))
\n(x*)

�c
.(hj)

hi \h ij

hj +
k

�c
.(hj)

hj
,

where we used the fact that when (q&1) c4+1�i, j�qc4 , then hithjt

hij . Since there are at least k&1 intervals with i # UC, which are not adja-
cent to each other, and p$j is of degree k&2, we conclude that p$j is bounded
in Eq by the same bound. Again .(hj)�h j t.(\)�\ for any x # Eq . This
proves (4.6). In particular,

|S$(x)|�c
.(\)

\
, x # Eq . (4.7)

We remark that once (4.7) holds in Eq , then it holds (with perhaps a
bigger constant) in Eq+1 _ Eq _ Eq&1 .

Given any set A�I denote

Ae := .
Ij & A{<

Ij , A2e :=(Ae)e, and A3e :=((Ae)e)e. (4.8)
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Now set

E := .
q � G

Eq , (4.9)

and decompose S into a ``small'' part and a ``big'' one by setting

s1(x) :={S$(x),
0,

if x � E e

if x # E e,

and s2 :=S$&s1 , and finally putting

S1(x) :=|
x

&1
s1(u) du+S(&1), S2(x) :=|

x

&1
s2(u) du.

We will show that

ak(S1 , .)�c, (4.10)

which by virtue of (4.1) implies

ak(S2 , .)�c+1<[c+2]=: c5 . (4.11)

To this end, put

pj1 :=S1 | Ij
,

then we will prove that

|S$1(x)& p$j1(x)|�c
.(hj)

h j \ |x&xj |+hj

hj +
k&1

, x # I. (4.12)

We first observe that either p$j1 #0 or p$j1= p$j , and in the latter case (4.7)
implies

| p$j1(x)|�c
.(h j)

h j
, x # Ij .

Hence we always have

| p$j1(x)|�c
.(hj)

hj \ |x&xj |+hj

h j +
k&2

, x # I. (4.13)

Next we note that (4.7) is valid for S1 and every x # I, i.e.,

|S$1(x)|�c
.(\)

\
, x # I. (4.14)
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Now, if \�hj , then .(\)�.(hj) and (1.2) through (1.5) yield

.(\)
\

�
.(hj)

\
�c

.(h j)
h2

j

( |x&x j |+hj),

and if \�hj , then \&k.(\)�h&k
j .(hj), and (1.2) and (1.4) imply

.(\)
\

�\k&1 .(hj)
hk

j

�c
.(hj)

hj \ |x&xj |+hj

hj +
(k&1)�2

.

Hence (4.14) yields

|S$1(x)|�c
.(hj)

hj \ |x&xj |+h j

hj +
k&1

, x # I. (4.15)

Combining (4.13) and (4.15) we have (4.12), and by it for x # Ii ,

|S1(x)& pj1(x)|= } |
x

xj

(S$j (u)& p$j1(u)) du }
�c

.(hj)
hj \h ij

hj +
k&1

|x&xj |

�c.(hj) \h ij

hj +
k

,

which is (4.10).
The set E is a union of disjoint intervals Fp=[ap , bp], between any two

of which there is an interval Eq with q # G. We may assume that n>c4 c5

and we will write p # AG (for ``Almost Good'') if Fp consists of no more
than c5 intervals Eq , i.e., if it consists of no more than c4c5 intervals Ij . Set

F := .
p � AG

Fp ,

and let

s4(x) :={S$(x),
0,

if x # F e

otherwise,

and s3 :=S$&s4 . (For the definition of F e see (4.8).) Now put

S3(x) :=|
x

&1
s3(u) du+S(&1), S4(x) :=|

x

&1
s4(u) du.
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Evidently S3 and S4 are comonotone with S in I, and proceeding as we did
above we get

|S$3(x)|�c
.(\)

\
, x # I, (4.16)

and

ak(S4 , .)<c6 . (4.17)

Now (4.16) together with Lemma 5 implies the existence of a polynomial
Vn which is comonotone with S on I"O or on I"O*, as the case may be,
such that

|S3(x)&Vn(x)|�c.(\), x # I. (4.18)

Since

s4(x)=S$(x), x # F e,

then by (4.1) we have for p � AG,

ak(S4 , .; F e
p)�ak(S, .; F e

p)�ak(S, .)�1. (4.19)

Also for such p,

S$4(x)=S$2(x), x # F 3e
p .

Hence from (4.11),

ak(S4 , .; F 3e
p )=ak(S2 , .; F 3e

p )�ak(S2 , .)<c5 . (4.20)

We still have to approximate S4 . To this end we construct three polyno-
mials Qn and Mn of degree <30ksn and Dn1

(S4 , } ) of degree n1 .
We begin with Qn . For each q for which Eq �F, let Jq be the collection

of intervals Ij �Eq with j # UC. Recall that q � G, therefore by (4.4), the
number of such intervals is at most 2k&4<c4 �4, and the total number of
intervals in Eq is c4 . Thus Lemma 8 is applicable for each Eq and if we set

Qn := :
q : Eq�F

Qn( } ; Eq ; Jq ; .),

where on the right-hand side are the polynomials guaranteed by
Lemma 10, and denote

J := .
q : Eq�F

Jq , J=. J,
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then we conclude that Qn satisfies

Q$n(x) 6(x)�0, x # (I"F ) _ O _ J, (4.21)

Q$n(x) sgn 6(x)�&
.(\)

\
, x # F"(O _ J ), (4.22)

and by (4.4),

Q$n(x) sgn 6(x)�4
.(\)

\
, x # J"O. (4.23)

Note that (4.21), (4.22), and (4.23) follow since for any given x all relevant
Q$n(x; Eq ; Jq ; .), except perhaps one, have the same sign. Finally it follows
from (3.16) that

|Qn(x)|�c.(\), x # I. (4.24)

Next we define the polynomial Mn . For each Fp with p � AG, let Jp&

denote the collection of three intervals in the left side of F 3e
p "F1 p , and let

Jp+ be the collection of three intervals in the right side of F 3e
p "F1 p .

Similarly, let Fp& and Fp+ be closed intervals each consisting of l :=c4c5

intervals Ij and such that Jp& :=� Jp& /Fp& /F 3e
p and Jp+ :=� Jp+ /

Fp+ /F 3e
p . Now we set

Mn := :
p � AG

(Qn( } ; Fp+ ; Jp+ ; .)+Qn( } ; Fp& ; Jp& ; .)).

Since l=c4c5 and +=3, it follows by (4.4) that c3 l�+�4c5 . Again we have
by Lemma 8,

M$n(x) sgn 6(x)�&2
.(\)

\
, x # F"O; (4.25)

M$n(x) sgn 6(x)�0, x # O;

M$n(x) sgn 6(x)�4c5

.(\)
\

, x # F 3e"(F _ O): (4.26)

and

M$n(x) sgn 6(x)�c7

.(\)
\ \ \

dist(x, F e)+
36sk

, x � F 2e _ O. (4.27)
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Finally, it readily follows by virtue of (3.16) that

|Mn(x)|�c.(\), x # I. (4.28)

The third auxiliary polynomial the properties of which we need to recall is
Dn1

:=Dn1
(S4 , } ). By the choice of r and by (4.17), Lemma 7 yields

|S4(x)&Dn1
(x)|�C0c6 .(\), x # I, (4.29)

and for any $>0,

|S$4(x)&D$n1
(x)|

�c1ak(S4 ; .; (x&$, x+$))
.(\)

\
+c8

.(\)
\ \

\n1
(x)

$ +
36ks

, x # I,

(4.30)

where c8 :=C2c6 . Noting that

\n1
(x)

\
�

n
n1

,

we are going to prescribe n1=cn so big that

c8 \ n
n1+

36ks

�c1 min(1, 3c5 , c7). (4.31)

Now we write

Rn :=Dn1
+c1Qn+c1Mn ,

and by virtue of (4.24), (4.28), and (4.29), we have

|S4(x)&Rn(x)|�c.(\), x # I.

In view of (4.18), this proves (4.2) for Pn :=Rn+Vn . Thus in order to con-
clude the proof of Lemma 9, we should prove that (4.3) holds for our Pn .
To this end, we recall that Vn is comonotone with S where it is required
so that we only have to deal with Rn . Since (4.30) holds with an arbitrary
$, we will prescribe different ones as needed. As long as x # F 2e, it suffices
to take $ :=\, while we recall (1.2) and the fact that both x+\n(x) and
x&\n(x) are increasing in I"(I1 _ In). First assume that x # F, so that
(x&$, x+$)�F e. If x # J"O, then S$4(x) sgn 6(x)�0, and we obtain by
(4.23), (4.25), (4.19), (4.30), and (4.31), that
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R$n(x) sgn 6(x)�c1 Q$n(x) sgn 6(x)+S$4(x) sgn 6(x)

+c1M$n(x) sgn 6(x)&|S$4(x)&D$n1
(x)|

�4c1

.(\)
\

&2c1

.(\)
\

&c1

.(\)
\

&c8

.(\)
\ \

\n1
(x)

\ +
36ks

�
.(\)

\
(c1&c8(n�n1)36ks)�0. (4.32)

If, on the other hand, x # F"(J _ O), then (4.5) is violated and by virtue of
(4.22), (4.25), (4.19), (4.30), and (4.31), we get

R$n(x) sgn 6(x)

�S$4(x) sgn 6(x)+c1 Q$n(x) sgn 6(x)

+c1M$n(x) sgn 6(x)&|S$4(x)&D$n1
(x)|

�5c1

.(\)
\

&c1

.(\)
\

&2c1

.(\)
\

&c1

.(\)
\

&c8

.(\)
\ \

\n1
(x)

\ +
36ks

�
.(\)

\
(c1&c8(n�n1)36ks)�0. (4.33)

Now assume that x # F 2e"(F _ O) so that (x&$, x+$)�F 3e. Again we
have S$4(x) sgn 6(x)�0, and by (4.21), (4.26), (4.20), (4.30), and (4.31),
we obtain

R$n(x) sgn 6(x)�c1Q$n(x) sgn 6(x)+S$4(x) sgn 6(x)

+c1M$n(x) sgn 6(x)&|S$4(x)&D$n1
(x)|

�4c1c5

.(\)
\

&c1c5

.(\)
\

&c8

.(\)
\ \

\n1
(x)

\ +
36ks

�
.(\)

\
(3c1c5&c8(n�n1)36ks)�0.

Finally, if x � F 2e _ O, then we set $ :=dist(x, F e), which implies that S$4
vanishes on (x&$, x+$). Hence ak(S4 , .; (x&$, x+$))=0, so by (4.21),
(4.27), (4.30), and (4.31), we conclude that
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R$n(x) sgn 6(x)�c1Q$n(x) sgn 6(x)+S$4(x) sgn 6(x)

+c1M$n(x) sgn 6(x)&|S$4(x)&D$n1
(x)|

�c1c7

.(\)
\ \\

$+
36ks

&c8

.(\)
\ \

\n1
(x)

$ +
36ks

�
.(\)

\ \\
$+

36ks

\c1 c7&c8 \
\n1

(x)

\ +
36ks

+
�

.(\)
\ \\

$+
36ks

(c1 c7&c8(n�n1)36ks)�0. (4.35)

Combining (4.32) through (4.35) we have constructed a polynomial satisfying
(4.2) and (4.3). K

The proofs of Theorems 1 and 2 now follow from Lemmas 3, 4, and 9,
except that in Lemma 9 the polynomial is of degree �cn. This is easily
rectified. First we may assume that c�k&1 and then we replace n by
[n�c], and observe that

\[n�c](x)�4c2\n(x), x # I,

thus

.(\[n�c](x))�.(4c2\n(x))�4kc2k.(\n(x)),

where we applied the fact that . # 8k. Hence Theorems 1 and 2 hold for
n�c, while for smaller n, see the remark after the statement of
Theorem 2. K

5. A COUNTEREXAMPLE

In this section we prove Theorem 3 by providing an example (see a
similar example in [7, Example 1.11]).

Let y1 :=1�(20n) and y2 :=&1�(20n) and define

1, x� y2 ,

f (x) :={&20nx, |x|<
1

20n
,

&1, x� y1 .

Then of course f is nondecreasing in [&1, y2] and [ y1 , 1]; and nonin-
creasing in [ y2 , y1]. Note that O*(8?n, Yn)/[ y1&1�4n, y1+1�4n] _
[ y2&1�4n, y2+1�4n] _ [&1, &1+1�n2] _ [1&1�n2, 1]=: O� (n, Yn).
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For t<1�(10n), we readily see that |( f, t)=20nt. Let Pn be comonotone
with f outside O� (n, Yn) and contrary to (1.9) assume that

| f (x)&Pn(x)|�A|( f, \n(x)), x # [&1, 1].

Since \n(\1�1�n2)<3�n2�1�10n, this implies

| f (\1�1�n2)&Pn(\1�1�n2)|<60A�n�1.

By virtue of the definition of f, we thus obtain \Pn(\1�1�n2)<0. Now,
Pn is nondecreasing in [&1+1�n2, &1�4n] _ [1�4n, 1&1�n2]. Therefore
we conclude that the norm of Pn in the interval [&1+1�n2, 1&1�n2] is
attained in [&1�4n, 1�4n]. Note that Pn is positive at &1�4n and negative
at 1�4n, hence it vanishes somewhere inside, say at `. If |Pn(!)|=&Pn& :=
&Pn&[&1+1�n2, 1&1�n2] , then `&!<1�2n, whence there exists % such that

|P$n(%)|> }Pn(!)
1�2n }=2n &Pn &.

On the other hand, for n�2, 2�(2&2�n2)�4�3 and - 1&%2�
- 1&1�16n2>7�8, thus by Bernstein's inequality for the interval
[&1+1�n2, 1&1�n2] we obtain

|P$n(%)|�
32n
21

&Pn &,

which is a contradiction. This completes the proof of Theorem 3.
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